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ABSTRACT By attaching infected erythrocytes to the vascular lining, Plasmodium fal-
ciparum parasites leave blood circulation and avoid splenic clearance. This sequestration
is central to pathogenesis. Severe malaria is associated with parasites expressing an anti-
genically distinct P. falciparum erythrocyte membrane protein 1 (PfEMP1) subset mediat-
ing binding to endothelial receptors. Previous studies indicate that PfEMP1 adhesins
with so-called CIDR�1 domains capable of binding endothelial protein C receptor (EPCR)
constitute the PfEMP1 subset associated with severe pediatric malaria. To analyze the
relative importance of different subtypes of CIDR�1 domains, we compared Pfemp1
transcript levels in children with severe malaria (including 9 fatal and 114 surviving
cases), children hospitalized with uncomplicated malaria (n � 42), children with mild
malaria not requiring hospitalization (n � 10), and children with parasitemia and no on-
going fever (n � 12). High levels of transcripts encoding EPCR-binding PfEMP1 were
found in patients with symptomatic infections, and the abundance of these transcripts
increased with disease severity. The compositions of CIDR�1 subtype transcripts varied
markedly between patients, and none of the subtypes were dominant. Transcript-level
analyses targeting other domain types indicated that subtypes of DBL� or DBL� do-
mains might mediate binding phenomena that, in conjunction with EPCR binding, could
contribute to pathogenesis. These observations strengthen the rationale for targeting
the PfEMP1-EPCR interaction by vaccines and adjunctive therapies. Interventions should
target EPCR binding of all CIDR�1 subtypes.

KEYWORDS Plasmodium falciparum, antigenic variation, gene expression, malaria,
PfEMP1

Based on simple clinical observations, malaria patients can be divided into a smaller
group with severe manifestations and a much larger group with uncomplicated

disease (1). In areas of Africa with high to moderate rates of malaria transmission, severe
malaria is seen almost only in children below 5 years of age (2). At the first entry point
for health care, the majority of African children diagnosed with Plasmodium falciparum
malaria suffer from uncomplicated febrile disease and are treated as outpatients.
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However, based on the initial assessment, the examining physician hospitalizes some
patients with more manifest symptoms. These children are not well, but based on simple
triage, they can be further divided into a large group with uncomplicated disease, who,
upon correct treatment, will be very likely to survive the disease, and a smaller group with
severe disease, where a proportion will die despite the administration of what is currently
considered optimal care (3). It is estimated that around 10 million children suffer from
severe malaria every year and that 5 to 10% of these children die (4). Even though most
children in areas where malaria is endemic are expected to experience several bouts of
malaria during childhood, only one to three of these bouts are likely to cause severe illness,
and they usually occur early in life (5). This epidemiological picture has spurred the
hypothesis that parasites that cause severe malaria are phenotypically different from those
that cause uncomplicated disease and that children acquire immunity to severe malaria by
mounting an antibody response to the parasite proteins that convey the phenotype
associated with severe outcomes (6–9).

P. falciparum parasites depend on evading splenic destruction by anchoring infected
erythrocytes to endothelial cells. The sequestration of parasites in host capillaries drives
malaria pathogenesis, and immunoepidemiological studies have indicated that an anti-
genically restricted subset of the polymorphic P. falciparum erythrocyte membrane protein
1 (PfEMP1) adhesins is associated with life-threatening infections experienced during
childhood in regions where malaria is endemic (7, 8). PfEMP1 adhesins are expressed on the
surface of erythrocytes infected with late-blood-stage parasites (trophozoites), where they
mediate attachment to receptors on the vascular lining (10), allowing infected cells to avoid
circulation and passage though the spleen, where they are destroyed.

PfEMP1 adhesins are encoded by var genes. Each parasite genome harbors about 60
variants (11–13), but each parasite expresses only one var gene at a time (14). Although
PfEMP1 sequences are extremely diverse, their domain architectures are highly orga-
nized, and all parasites carry similar PfEMP1 repertoires, which appear to bestow on all
parasites the same fundamental repertoire of human receptor specificities (15). The
large multidomain PfEMP1 adhesins consist of 2 to 9 Duffy-binding-like (DBL) and
cysteine-rich interdomain region (CIDR) domains, which, based on sequence similarity,
can be further subdivided into different groups (16, 17). A single distinct group of
PfEMP1 proteins, VAR2CSA, binds parasites to receptors in the placenta and is a known
virulence factor for pregnancy malaria (18, 19). It has proven more challenging to
characterize the PfEMP1 types or traits linked to parasites causing severe pediatric
malaria. Early studies implicated the so-called group A and B var gene variants (Fig. 1),
which are separated from each other by chromosomal orientation and the encoding of
distinct N-terminal domains (group A DBL�1 versus group B DBL�0/2 domains) (20–24).
Subsequent studies specified that severe malaria is associated with parasites expressing
the group B var gene subset, encoding domain cassette 8 (DC8) (has DBL�2 domains)
and group A var genes, including those encoding DC13 (25, 26). These PfEMP1 types
were found to share a binding phenotype (27), as both DC8 and DC13 bind endothelial
protein C receptor (EPCR) via their CIDR�1.1 and CIDR�1.4 domains, respectively.
Recently, the crystal structure of the CIDR�1-EPCR interaction was solved, and a more
precise description of which CIDR�1 subclasses bind EPCR was obtained (28), showing
that most CIDR�1 domain variants bind EPCR. Jespersen et al. (29), who reported the
near-full-length sequence annotation of var transcripts in 44 patients, found that
CIDR�1 was the only domain type that was common between different PfEMP1 variants
expressed by severe malaria isolates. Parasites expressing DC13 PfEMP1 were recently
shown to bind both EPCR and intercellular adhesion molecule 1 (ICAM-1) (30), sug-
gesting that other PfEMP1 traits such as binding to ICAM-1 in combination with EPCR
binding could increase the risk of developing specific syndromes. Similarly, PfEMP1
with C-terminal DC6 containing DBL�14-DBL�5-DBL�4 domains (31) was linked to the
hospitalization of P. falciparum-infected Indian adults. Those studies included relatively
few patients, and it is possible that var type quantification by sequence tags or by
primers with limited sequence variant coverage led to the overestimation of these
PfEMP1 traits or the underestimation of others.
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Here, we show by quantitative PCR (qPCR) and by using a new set of var type-
specific primers that is more comprehensive than those used previously (25, 26) that
parasites from Tanzanian children hospitalized with malaria and diagnosed with severe
malarial anemia, cerebral malaria, or no severe complications (uncomplicated malaria)
were all characterized by high transcript levels of var genes encoding DC8 and the
subset of group A var genes encoding EPCR-binding PfEMP1. Furthermore, in a few
cases, severe disease was associated with increased levels of transcripts encoding
specific subsets of DBL� or DBL� domains.

RESULTS
Clinical characteristics of patients. One hundred sixty-five Tanzanian children

admitted to the hospital with P. falciparum malaria and 22 P. falciparum-positive
children identified by a positive rapid diagnostic test during cross-sectional village
surveys were included in this study. Children were classified as having severe malaria
if the hemoglobin (Hb) level was �5 g/dl, the Blantyre coma score was �3, there were
clinical signs of respiratory distress, or parasitemia was �200,000 parasites/�l (Table 1
and Fig. 2). Children admitted to the hospital with an Hb level of �8.0 g/dl, a Blantyre
coma score of 5, and parasitemia of �200,000 parasites/�l were categorized as having
uncomplicated malaria. Children with severe malaria were divided into nonoverlapping
groups of those with a Blantyre coma score of �3 and a Hb level of �5 g/dl (cerebral
malaria), those with a Hb level of �5 g/dl and a Blantyre coma score of 5 (severe
anemia), and those with overlapping symptomatology or severity signs other than
coma or low Hb levels (Fig. 2). Village children were divided into febrile (temperature
of �37.5°C) and afebrile children. All children received prompt treatment and care, and
as a result, the mortality rates were 0% among the children from the village and
hospitalized children with uncomplicated malaria and 7.3% among those with severe
disease (Table 1). The hospital studies were conducted at Magu District Hospital on the
shore of Lake Victoria and Korogwe District Hospital, 100 km from the Indian Ocean
coastline. These sites are in separate ecological zones 650 km apart.

Malaria patients have high levels of transcripts encoding PfEMP1 adhesins
predicted to bind EPCR, and increasing levels are associated with increased
disease severity. The median transcript level reported for each primer set and the

FIG 1 Schematic representation of typical PfEMP1 domain compositions. The N-terminal “head structure” confers mutually exclusive receptor-
binding phenotypes: CSA (VAR2CSA), EPCR (CIDR�1), CD36 (CIDR�2-6), and as-yet-unknown phenotypes (CIDR�/�/� andVAR3). Group A PfEMP1
adhesins are encoded by subtelomeric genes transcribed toward the telomere. Group A PfEMP1 adhesins include both EPCR-binding and
non-EPCR-binding PfEMP1 adhesins. Group B PfEMP1 adhesins are encoded by telomeric genes transcribed toward the centromere and include
PfEMP1 adhesins that bind EPCR (DC8) and CD36. Group C PfEMP1 adhesins bind CD36 and are encoded by centromeric genes. PfEMP1 adhesins
typically have two to six domains C terminal to the head structure. The subclass compositions of these domains vary but in general follow the
depicted order. The C-terminal domain subclass composition is generally unrelated to the division of the N-terminal head structure, although
some DBL� sequences occur only in either group A or group B PfEMP1 adhesins. Most group A and DC8 group B PfEMP1 adhesins have four or
more domains, whereas about two-thirds of the remaining group B and the group C PfEMP1 adhesins have only DBL�-CIDR tandem domains.
(See reference 17 for a detailed description of PfEMP1 diversity and domain architecture.) The estimated proportions of var genes of each group
or with the indicated domain classes are given. TM, transmembrane domain; ATS, intracelluar acidic terminal segment.
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summarized transcript levels for combinations of primer sets targeting same main
domain class (e.g., EPCR-binding CIDR�1) were stratified according to clinical presen-
tation (Table 2). The most striking differences were found for the levels of transcripts
encoding CIDR�1 domains, which increased with disease severity (median levels of
transcripts [transcript units, Tu] for CIDR�1 of all subtypes combined were 1, 12, 49, and
62 for village malaria without fever, village malaria with fever, uncomplicated hospital
malaria, and severe hospital malaria, respectively; P � 0.0001 by a Kruskal-Wallis rank
test). For all CIDR�1 primers but CIDR�1.5 and CIDR�1.6, there was a statistically
significant association between disease severity and transcript level (P � 0.001 for all
comparisons by a Kruskal-Wallis rank test). There was considerable heterogeneity
within groups, and in comparisons between two disease outcomes (Table 2; see also
Fig. S3 in the supplemental material), the difference in transcript levels reached
statistical significance for only some of the CIDR�1 subclasses (e.g., the level of
CIDR�1.1 was higher for village malaria with fever than for village malaria without fever
[P � 0.021], the level of CIDR�1.1 was higher for severe hospital malaria than for
uncomplicated hospital malaria [P � 0.004], and the level of CIDR�1.4/6 was higher for
uncomplicated hospital malaria than for village malaria with fever [P � 0.012]).

The assay allowed only crude comparisons between transcript levels within patients
or patient groups. However, the data indicate that within hospitalized patient groups,
the CIDR�1-encoding transcripts were generally found at higher levels than were
transcripts for the other main group A var types characterized by encoding CIDR�

domains. In hospitalized patients, the abundance of transcripts encoding EPCR-binding
domains of DC8 (i.e., CIDR�1.1 and CIDR�1.8 [“CIDR�1.DC8”]) was roughly similar to the
abundance of transcripts encoding group A EPCR-binding domains (CIDR�1.4 to -7
[CIDR�1.A]) (Table 2). var2csa was found at high levels in 25.1% of the patients across
all patient groups but with no statistically significant relation to severity.

The subclass of the N-terminal DBL� domain is predictive of the adjacent CIDR class.
For this reason, primers targeting loci encoding the 3= end of DBL� domains can to a
certain degree be used to infer the expression level of PfEMP1 with specific receptor-
binding phenotypes. The “DBLa2/1.1/2/4/7” primer set reports transcripts encoding
CIDR�1 domains predicted to bind EPCR (both DC8 and group A genes), whereas the

FIG 2 Malaria patients enrolled in the study. Samples were collected in villages or at district hospitals in Korogwe or Magu. Children
were categorized into nonoverlapping groups. At the hospital, this included patients with cerebral malaria (CM), those with severe
anemia (SA), and those with overlapping syndromes and/or other signs linked to severity (respiratory distress and hyperparasitemia).
Boxes in red are categories presented in Tables 1 and 2.
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“DBLa1.5/6/8” primer set primarily detects transcripts of group A genes encoding
N-terminal CIDR�/�/� domains predicted not to bind EPCR. The DBL�1all primer set
reports transcripts of most group A genes encoding N-terminal CIDR�1/�/�/� domains
predicted not to bind CD36. Transcript levels reported by these DBL� domain primer
sets confirmed the results obtained with the CIDR primers for hospitalized children,
showing a higher abundance of transcripts encoding EPCR-binding PfEMP1 than of
transcripts encoding other group A DBL�1.5/6/8 domains.

var expression patterns in patients with respect to mid- and C-terminal PfEMP1
domain classes. The DBL�, -�, and -� domain classes each cover broad sequence
variation and include few well-defined subclasses, which makes it difficult to design
subclass-specific primers that retain target coverage. However, a few distinct loci were
identified in a subset of sequences encoding the DBL�1/3 and DBL�5 domains,
including some sequence variants previously associated with ICAM-1 binding (30, 32,
33). Primers targeting these loci did not report significantly different levels between
patients with severe and those with uncomplicated malaria.

The only C-terminal sequence trait unique to group A PfEMP1 is DC5. DC5 is found
in about 15% of group A PfEMP1 adhesins and was previously associated with parasites
binding to platelet endothelial cell adhesion molecule 1 (PECAM1) (34). The median
transcript abundance was low in all patient groups.

Twelve primer sets targeting all different DBL� subclasses and most DBL� subclasses
not associated with VAR1, VAR2CSA, or VAR3 were applied (Table 2; see also Fig. S1 in
the supplemental material). The DBL� and DBL� domains are most often found to-
gether and form different domain cassettes (DC1 to -3, -6, -7, and -9 to -12). When
transcript levels were summarized for all DBL� primers, median transcript levels in-
creased with increasing severity for the patient group. However, most DBL� subclass
primers reported low transcript levels, which did not differ significantly between
patient categories (data not shown). Although the median levels were low, a small
proportion of patients with severe outcomes had transcripts targeted by the DBLz2a or
DBLz3 primers, resulting in a significant difference in the medial DBLz2a or DBLz3 levels
between children with severe malaria and those with uncomplicated malaria (Table 2
and Fig. S3). The DBLz3 primers reported fewer transcripts in villagers with fever than
in those without fever (P � 0.0009). When transcript levels were summarized for all
DBL� primers, the median transcript level was higher in hospitalized children than in
children from the village.

The var transcript profiles for patients with severe anemia or cerebral malaria
and for those who died are largely similar. Transcript profiles were compared
between patients with severe anemia and those with cerebral malaria (Table 2). For
nearly all primers, the median transcript levels were comparable between the two
groups of patients; the only exception was a higher level of transcripts reported for
cerebral malaria patients with the DBLb1/3-1 primer set (P � 0.039). The median
transcript level was low in both patient groups, and the observed difference reflected
that �25% of the patients with cerebral malaria had high levels of these transcripts (see
Fig. S4 and Table S1 in the supplemental material).

There was no statistically significant difference between the transcript levels in those
who died and those who survived a complicated malaria episode. Among those who
died, the median transcript levels of genes encoding EPCR-binding PfEMP1 and par-
ticularly those belonging to group A were high, but there was considerable variation in
transcript levels within this patient group (Table 2).

CIDR�1 transcript profiles differ considerably between patients but not ac-
cording to patient group. The primer sets used to measure transcripts encoding the
six subclasses of EPCR-binding domains (CIDR�1.1 and CIDR�1.4-8) had similar good
coverage and specificity (see Fig. S1 in the supplemental material); therefore, the
transcript abundances reported with these primers within a patient should be com-
pared with caution. The transcript patterns varied markedly between patients. In most
patients, several different CIDR�1 types were expressed, but the dominant CIDR�1
subtypes varied from patient to patient. There was no association between disease
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outcome and the relative abundance of different CIDR�1 subtypes. The CIDR�1 sub-
type transcript patterns in 36 randomly selected patients are illustrated, with Fig. 3A to
C showing 6 patients with parasitemia without fever, 6 with mild malaria, and 6 who
were hospitalized with uncomplicated malaria, illustrating the increasing levels of
CIDR�1 subtype transcripts with increasing disease severity, and Fig. 3D and E showing
6 patients with severe anemia, 6 with cerebral malaria, and 6 who died, illustrating that
the majority of patients with severe disease had high transcript abundances of several
CIDR�1 subtypes and that none of the subtypes were particularly dominant.

DISCUSSION

Here, we took advantage of the improved resolution of var sequence diversity
gained through var genes extracted from over 200 recently sequenced P. falciparum
genomes to design a new set of primers for quantitative PCR transcript analysis of var
subclasses. These primers allowed unprecedented sensitivity and specificity in the
detection and quantification of var transcripts encoding conserved sequence traits. In
particular, var transcripts encoding group A PfEMP1 as well as transcripts encoding
DBL� or DBL� domains were well covered. Moreover, the coverage of specific DBL�

domains was improved. In general, the primers are predicted to underestimate the
expression level of the targeted traits. This was particularly true for the primers
targeting genes encoding CD36-binding CIDR�2-6, for which coverage was estimated
to be 17%. In addition to the improved primer set, this study included a higher number

FIG 3 Examples of levels (Tu) of var transcripts encoding different CIDR�1 subclasses in six children with parasitemia without ongoing fever
(A), six children with mild malaria not requiring hospitalization (B), six children hospitalized with uncomplicated malaria (C), six children with
severe malarial anemia (D), six children with cerebral malaria (E), and six children who succumbed to infection (F). Bars represent transcript
levels reported by primer sets CIDRa1.1 (C1) (red), CIDRa1.8 (C8) (orange), CIDRa1.4/6a (c4) (blue), CIDRa1.5 (C5) (black), CIDRa1.6b (C6) (gray),
and CIDRa1.7 (c7) (green). The red line indicates a Tu value of 16.
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of malaria patients and a broader spectrum of disease outcomes than in previous
studies employing qPCR (25, 26, 31). Patient groups included children with parasitemia
without fever, children with mild malaria who could be treated in the village, children
who required hospitalization, children with severe disease manifestations, and children
with a fatal infection outcome. Our study is based on the hypothesis that the PfEMP1
parasite phenotype is a determinant of disease outcome. Other factors relating to the
patient (e.g., host genotype and health-seeking behavior) and parasite (e.g., drug
resistance phenotype) will also contribute to the infection outcome. It should also be
borne in mind that disease categorization was based on clinical presentation at
diagnosis. Thus, parasites with a pathogenic phenotype may be detected in patients
with mild symptoms who are diagnosed early. On the other hand, parasites with a
nonpathogenic phenotype may be detected in patients for whom the symptoms are
not caused by P. falciparum but by competing pathologies. A recent study from Malawi
showed that more than 20% of patients classified as having cerebral malaria based on
clinical criteria similar to those used in the present study were concluded to have died
from causes other than malaria upon autopsy (35). Despite these inherent limitations,
the median CIDR�1 transcript levels increased significantly with disease severity, being
50 to 100 times higher in those with severe disease than in those with parasitemia
without fever. Unexpectedly, even patients with mild fever symptoms had increased
expression levels of diverse, but in particular EPCR-binding, PfEMP1 compared to those
in asymptomatic P. falciparum-infected individuals. This may imply that disease onset is
associated with increased expression levels of, in particular, EPCR-binding PfEMP1;
however, patient numbers were low, and more extensive studies are required to
confirm this hypothesis. The transcript levels in children with severe malaria were
similar to or exceeded the var2csa transcript level (encoding the PfEMP1-binding
parasites in placenta) in parasites isolated from pregnant women (36, 37). The var2csa
transcript levels were relatively high in one of four children regardless of disease
severity. This could reflect that VAR2CSA was expressed on the infected erythrocytes of
these children. However, the var2csa gene is unique among var genes in containing an
upstream open reading frame, which can repress the translation of transcripts (38).

In line with previously reported observations (25, 26, 39), DC8 and group A PfEMP1
were highly expressed in most hospitalized children, and the abundance of transcripts
encoding DC8 PfEMP1 was statistically significantly higher in patients with severe
malaria than in those with uncomplicated disease. In contrast to data from previous
reports, the difference in the abundances of transcripts encoding DC13 (containing
CIDR�1.4) in patients with severe malaria or uncomplicated disease did not reach
statistical significance. However, EPCR-binding group B (i.e., DC8) and group A PfEMP1
adhesins were estimated to be expressed at similar levels in patients with severe
malaria. Moreover, transcripts for all EPCR-binding CIDR�1 subclasses were found to be
highly expressed in individual patients, and in many patients, there were high levels of
transcripts encoding several CIDR�1 subclasses. Thus, the development of severe
malaria symptoms appears to be associated with EPCR-binding CIDR�1 in general. This
is in line with the observation that most CIDR�1 variants bind EPCR with high affinity
(28) and implies that a vaccine to protect children against severe malaria should target
all or most CIDR�1 subtypes predicted to bind EPCR.

Due to the poor sensitivity of the detection of genes encoding CIDR�2-6 or CIDR�/�,
the abundance of these transcripts might have been underestimated. However, a
recent study by Jespersen et al. (29), which did not rely on specific var gene primers,
showed that genes encoding CIDR�2-6- or CIDR�/�-containing PfEMP1 did not dom-
inate var transcript profiles in patients with severe malaria. In the present study, the
coverage of primers targeting genes encoding group A N-terminal CIDR� domains was
high, and in agreement with the results reported by Jespersen et al., the data showed
that these transcripts were highly expressed in only a few patients with severe malaria.
Together with data from early studies (20–24) linking group A PfEMP1 with severe
disease, these studies suggest that parasites that bind to CD36, or unknown receptors
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through other group A-linked N-terminal CIDR�/�/� subclasses, do not commonly
precipitate severe malaria symptoms in young children.

In support of the suggested additive pathogenic effect of ICAM-1 binding (30),
primers targeting group A DBL� domains, some of which have been shown to bind
ICAM-1, reported elevated transcript levels in severe malaria patients, in particular
among those with cerebral complications. The median transcript levels were low, and
a minority of patients with cerebral complications (24%) exhibited high expression
levels of genes encoding PfEMP1 predicted to bind EPCR and ICAM-1. Both CD36- and
EPCR-binding PfEMP1 adhesins can bind ICAM-1 (30, 32, 33, 40), but ICAM-1 and CD36
binding does not appear to be a common phenotype for parasites that cause severe
malaria (29). Thus, EPCR binding by CIDR�1 domains appears to be required for the
development of severe symptoms, but ICAM-1 binding and other host receptor inter-
actions may, in some individuals (41), act in concert to strengthen cytoadhesion and
aggravate disease. It is conceivable that this notion also explains the inconsistent
association of the expression of diverse DBL� variants with both uncomplicated (DBL�4)
(25) and severe (DBL�2a and DBL�3) (this study) pediatric malaria and severe malaria in
adults (DBL�5) (31).

It was previously reported that var expression levels differed among cerebral malaria
patients with differing histopathologies (42); however, the present study could not
address this. Future studies with a better resolution of cerebral manifestations, e.g.,
qualified by examination for retinopathy (43), are required to elucidate the suggested
increased risk of development of cerebral complications when parasites can bind both
EPCR and ICAM-1. However, our results suggest that circumstances relating to the
patient, such as the expression of EPCR in different parts of the vasculature, regulation
of the local inflammatory response, or prior immune priming, may be more important
determinants of disease manifestation than the subtype of the EPCR-binding PfEMP1
gene that is being expressed.

In around one of five of the severe malaria patients in the present study, none of the
primers used reported high levels of var transcripts (here defined as a transcript unit
[Tu] value of �16). Although most primers used have target coverage below 100%, this
could reflect that these patients suffered from infection with parasites expressing
CD36-binding PfEMP1 or that the symptoms of some of these patients were not caused
by malaria parasites.

Rosetting is a PfEMP1-mediated parasite phenotype previously associated with
severe malaria (44–46). Rosetting appears to be mediated by some group A DBL�1
domains (47–49) but has also been suggested to be mediated by RIFIN (50) and STEVOR
(51) proteins. As the PfEMP1 trait involved in the rosetting phenotype is yet to be
resolved and cannot be predicted from domain subgrouping or amino acid sequence,
this study cannot predict whether or to what degree, for example, DBL�1 domains
adjacent to the EPCR-binding CIDR�1 domains contributed to pathology by mediating
rosetting.

Data from this study in combination with previously reported observations from
other studies of var transcription (25, 26, 29, 31) suggest that the expression of
EPCR-binding PfEMP1 is the overarching parasite phenotype associated with the de-
velopment of symptomatic and severe malaria and that its clinical relevance is stable
across various confounding host or environmental factors. In line with this are the
observations that parasites from children with severe disease and in vitro-adapted
parasites expressing CIDR�1 PfEMP1 bind endothelial cells via EPCR (22, 52–54) and
that CIDR�1 domains bind EPCR with high affinity, and binding inhibits the ability of
EPCR to bind protein C, thereby potentially driving pathogenic endothelial inflamma-
tion (27, 28, 55–57). Finally, in regions where malaria is endemic, IgG to EPCR-binding
CIDR�1 domains is acquired early in life and before antibodies to other classes of CIDR
domains are acquired (54). Altogether, these findings argue that a vaccine that induces
IgG to inhibit the PfEMP1-EPCR interaction could reduce severe disease and death due
to P. falciparum and even reduce the number of malaria infections causing hospital-
ization. In addition, an adjunctive therapy aimed at alleviating the potential damaging
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consequences directly associated with the PfEMP1-EPCR interaction (58) may reduce
the fatality rate or degree of sequelae for malaria patients.

MATERIALS AND METHODS
Sample collection. Samples were collected from 187 children who were blood smear positive for P.

falciparum. The children were enrolled after informed consent was obtained from a parent or legally
acceptable guardian. Of the 187 children, 165 were admitted to either Korogwe District Hospital in
northeast Tanzania (n � 110) or Magu District Hospital in the northwest (n � 55). Children were clinically
evaluated by study clinicians, and a blood sample was collected for diagnostic and research purposes,
after which treatment was instigated according to national guidelines. Samples were collected in 2013
and 2014. Blood samples from 22 nonhospitalized children living in Korogwe district who had mild
malaria or malaria not accompanied by fever were also included in the study. These children were
recruited as part of cross-sectional surveys in a village in 2007 and 2008. This study received ethical
clearance and approval from the National Health Research Ethics Committee in Tanzania (reference no.
NIMR/HQ/R.8c/Vol.II/436).

Primer design. The sequence diversity of the different PfEMP1 domain classes differs from the
relatively clear division of CIDR�1 domains into a few distinct subclasses to no particular subgrouping of
DBL� domains (17). For this reason, the design of informative primers was possible only for the
best-defined domain subclasses (see Fig. S1 in the supplemental material). To maximize coverage while
maintaining specificity for regions encoding specific domain subclasses, primers were designed based on
full-length DBL and CIDR domain-encoding sequences from 7 P. falciparum genomes (17) and 226
Illumina whole-genome-sequenced P. falciparum field isolates (28, 59) (Fig. S1).

A particular effort was made to secure good coverage of group A var genes, in order to resolve which
group A and DC8 var gene subclasses are associated with severe malaria. Group A PfEMP1 adhesins are
characterized by having NTSA-DBL�1 and CIDR�1, -�, -�, or -� domains, where the NTSA sequences
exhibit very little subgrouping, and the subclass of DBL�1 variants is predicted largely by the subgroup-
ing of the following CIDR domain (17, 25). Group A CIDR�1.4-7 domains bind EPCR, whereas group A
CIDR�1.2/3 domains are found in var1 pseudogenes, which do not bind EPCR (28). The functions of CIDR�

and the more diverse CIDR� and -� domains are unknown but have been suggested to be associated
with rosetting (15). Group B and C PfEMP1 proteins have DBL�0- and CD36-binding CIDR�2-6 domains,
apart from the atypical DC8-type group B PfEMP1 adhesins, which carry the DBL�2-CIDR�1.1/8 domains
(EPCR-binding CIDR). Good-coverage primers (see Fig. S1 and S2 in the supplemental material) were
successfully designed for all CIDR�1 and N-terminal CIDR� domain subclasses, although the diversity of
CIDR�2-6 and N-terminal CIDR� and -� domains was difficult to capture.

The unusually conserved PfEMP1 variants VAR2CSA (binding placental chondroitin sulfate A [CSA])
and VAR3 (unknown binding specificity) were targeted by specific DBL primers. Good coverage was also
achieved for primers targeting C-terminal DBL� and DBL� domains. ICAM-1 binding has been mapped to
group A DBL�1/3 and group B and C DBL�5 domains. Primer sets with limited coverage but good
specificity for DBL�5 and two subsets of DBL�1/3 (DBLb1/3-1 and DBLb1/3-2) were designed. For all
primer sets, amplification efficiencies of �94% were ascertained by qPCR measurements of serial 10-fold
dilutions of 3D7, HB3, and IT4/FCR3 genomic DNAs (gDNAs), and the predicted size or absence of PCR
amplicons was validated by gel electrophoresis. The specificity and coverage of each primer set were
evaluated in silico by using USEARCH (“search_pcr”) (60) against full-length DBL and CIDR domains
extracted from the 233 genome sequences, calling targets by allowing up to 2 mismatches in each
primer. The result was manually parsed to remove hits with 3=-terminal mismatches to either primer and
to remove all but one (best) hit for each domain/contig (multiple reports of an amplicon from the same
locus may be generated when degenerate primers are employed). These criteria were previously found
to give good estimates of target amplification (25).

In summary, good specificity and coverage were achieved for primer sets capturing transcripts
encoding subclasses of CIDR�1 as well as CIDR�, VAR2CSA, and VAR3. The coverage for var sequences
encoding DBL� and DBL� domains was also good, while the coverage for CIDR�, CD36-binding CIDR�2-6,
and DBL� was low.

Parasite RNA and qPCR. Erythrocytes (50 to 100 �l) pelleted by centrifugation from venous blood
samples were completely dissolved in 1 ml TRIzol reagent (Invitrogen) and stored in liquid nitrogen, in
dry ice, or at �80°C until RNA purification was performed. Total RNA was extracted, treated with DNase
(DNase I; Sigma-Aldrich), and verified for lack of residual genomic DNA by qPCR using primers for the
endogenous seryl-tRNA synthetase housekeeping gene before being reverse transcribed (Superscript II;
Invitrogen) as described previously (25). qPCR analyses were performed by using QuantiTect SYBR green
PCR master mix (Qiagen). Master mix was distributed into primer-loaded tubes for qPCR performed in
20-�l reaction mixtures by using the Rotorgene thermal cycler system (Corbett Research) and cycling
conditions described previously (25).

var transcript abundances were determined in relation to the averaged transcript abundances of the
endogenous seryl-tRNA synthetase and aldolase housekeeping genes (ΔCTvar_primer � CTvar_primer �
C

Taverage_control primers). ΔCTvar_primer values were translated into transcript units �Tu 	 2�5
�Ct�� (25), where
low-abundance transcripts with threshold cycle (ΔCT) values of �5 were all assigned a ΔCT value of 5
(Tu � 1).

For some primer sets, the reported transcript abundance was summarized by adding the reported
transcript units for each primer set and subtracting a value of 1 for each additional value added
(subtracting was done to ensure that the summarized Tu value was equal to 1 if no signal was detected
for any of the transcripts summarized).
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Due to the differences in sequence-type coverage between primer sets, and the unknown sequence
diversity of the targeted genes in each sample leading to variations in primer set sensitivities between
samples, exact estimates of the relative expression levels of var gene types within individual samples
cannot be made. However, reported transcript levels can be used to make rough assessments of the
relative transcript abundances of different var types within a patient or in patient groups (25). A transcript
abundance value of 16 was chosen across primers to reflect a high level of transcripts and to ease data
interpretation. This threshold was chosen based on the var2csa transcript level measured in parasites
from pregnant women and knowledge about transcript levels in cultured parasite lines selected to
predominantly express a PfEMP1 adhesin.

Statistical analyses. Quantitative comparisons of transcript levels were done separately for each
primer set or groups of primers between patient groups by using a Kruskal-Wallis rank sum test or a
Wilcoxon rank sum test using Stata statistical software. Fisher’s exact test was used to test proportions
of patients with high levels (Tu � 16) of selected transcripts.

There was no statistically significant difference in the transcript abundances measured in Korogwe
and Magu (data not shown). Hence, data from the two sites were pooled.
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